

GEOTHERMOS: a new Matlab code for geothermal potential assessment

<u>G. Gola¹</u>, M. Cornetto², M. Basant³, V. Cortassa³, A. Galgaro⁴, M. Gizzi⁵, T. Nanni¹, M. Tesauro³, F. Vagnon⁵, A. Manzella¹

¹ Institute of Geosciences and Earth Resources, National Research Council, Italy

² Department of Energy "Galileo Ferraris", Politecnico di Torino, Italy

³ Department of Mathematics, Informatics and Geosciences, University of Trieste, Italy

⁴ Department of Geosciences, University of Padova, Italy

⁵ Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Italy

Innovation in GEOthermal resources and reserves potential assessment for the decarbonization of power/thermal sectors

GNGTS, 11-14 febbraio 2025, Bologna

Geothermal potential assessment (NEW CODE by IGG-CNR)

Progetto PRIN 2022 PNRR InGEO

-4000

-5000

100

200

300

Temperature (°C)

400

500

INPUT: thermal model of Cesano-Sabatini geothermal field

Recent magmatic activity (0.8 – 0.07 Ma)

Progetto PRIN 2022 PNRR InGEO

-4000

-5000

0

100

200

300

Temperature (°C)

400

500

T_{prod}

 $\mathbf{P}_{\mathsf{prod}}$

Borehole-reservoir coupling

Bottom hole: Evaluate inflow rate Q (radial flow, homogeneous reservoir)

- Rock permeability
- Thickness of productive horizon
- ΔP (pressure drop from static P_o to dynamic P_1 conditions)
- Fluid dynamic viscosity (P,T dependence)
- Compressibility (= zero)
- Borehole and influence radii
- Skin factor

Well-head conditions: $f(h_{inlet}, P_{inlet}, X_{steam})$ Evaluate outflow variables:

- Pressure (Swamee friction factor)
- Temperature (conductive radial heat loss)
- Steam fraction

FloWell (Guomundsdottir et al., 2013) solves energy and momentum equations using numerical integration. The MATLAB ode23 built-in function is used.

P_{res} T_{res}

Power Plants

DRY STEAM POWER PLANT

SINGLE FLASH POWER PLANT

BINARY POWER PLANT

 $\mathbf{Q}_{\mathsf{prod}}$

SPECIFIC WORK $w_{turb} = h_1 - h_2 \left[\frac{kJ}{kg} \right]$

$$\dot{W}_{turb} = \frac{w_{turb} \cdot \dot{m}_1}{1000} \ [MW]$$

POWER TURBINE

POWER GENERATOR

$$W_{gen} = W_{turb}\eta_{gen} [MW]$$

Validation

Finanziato dall'Unione europea NextGenerationEU

CrossMark

Geothermics 51 (2014) 142-153

Review

Efficiency of geothermal power plants: A worldwide review

Sadiq J. Zarrouk^{a,*}, Hyungsul Moon^b

^a Department of Engineering Science, The University of Auckland, Private Bag 92019, Auckland, New Zealand ^b Mighty River Power, 283 Vaughan Rd, PO Box 245, Rotorua 3040, New Zealand

I dDIC 4

Zarrouk et al. (2014), against the power output evaluated by the code.

Single flash plant pressure showing separator and turbine exhaust pressure

The validation of these models is required to check the reliability of the code, which simulates

the thermodynamic cycle of the plants. The validation was done by comparing the power

capacity (installed and running) of the real power plants, reported in the work done by

single hash plant pressure showing separator and taronic exhaust pressure,											
Country	Field (plant name)	No, unit	Туре	Start	Installed	Running	ṁ (t/h)	$\dot{m}_{s}(t/h)$	m _f (t/h)	h(kj/kg)	Reference
				date	capacity	capacity					
					(MWe)	(MWe)					
Russia	Pauzhetka	3	1F	1967	11	11	864	-	-	780	[6,68]
Turkey	Kizildere	1	1F	1984	20,4	10	1000	114ª	886ª	875	[6,10,11]
Japan	Oita (Takigami)	1	1F	1996	25	25	1270	-	-	925	[6,69]
Japan	Akita (Onuma)	1	1F	1974	9,5	9,5	540	107	433	966	[6,17,69]
Japan	Iwate (Kakkonda)	2	1F	1978	80	75	2917	416	2501	992	[69-71]
Japan	Miyagi (Onikobe)	1	1F	1975	12,5	12,5	625	-	-	1020	[17,69,72,73]
USA	Utah-Roosevelt Hot Springs (Blundell1)	1	1F	1984	26	23	1020	180	840	1062	[32,63]
Costa Rica	Miravalles (1,2,3, Well heat unit)	4	1F	1993	144	132,5	5634	1188ª	4446ª	1107	[23,74,75]
France	Bouillante 2	1	1F	2004	11	11	450	90	360	1110	[46,76,77]
El Salvador	Ahuahapan (U1,2)	2	1F	1975	60	53,3	1848	373	1475	1115	[78,79]
-											•
Japan	Tokyo (Hachijyojima)	1	1F	1999	3,3	. 3,3	44	40ª	4ª	2582	[14,69]
USA	California – The Geyser	24	D	1971	1529	833	6950	6950	-	2650	[32,79,109-111]
New Zealand	Wairakei (Pohipi)	1	D	1996	25	25	200	200	-	2750	[6,112,113]
Italy	Larderello	21	D	1985	542,5	411.7	3060	3060	-	2770	[6,114]
Indonesia	Darajat	2	1F	1994	145	145	907	907	-	2783	[6,7,105]
Indonesia	Java (Kamojang)	3	D	1982	140	140	1086	1086	-	2792	[6,23,105]
Italy	Travale/Radicondoli	6	D	1986	160	126,6	1080	1080	-	2793	[114,115]
Japan	lwate (Matsukawa)	1	D	1966	23,5	23,5	201	201	-	2797	[6,17,69]

Numbers refer to numbered references in the list in the online supplement,

^a Mass of steam and brine are calculated based on separator pressures,

Validation

Binary

The band error in which the plant is considered well-represented is $\pm 10\%$.

It was arbitrarily chosen the lack of due to information regarding the operational parameters of the plants reported. Only for some flash the plants power separation pressure and turbine outlet the pressure are indicated. Consequently, during the validation simulations. default values were used.

Economic assessment

Copyright 2024 Lazard

Simulations are done for:

- Permeability values of 10^{-14} and 10^{-15} [m^2]
- 2 and 3 kilometers of depth
- 30 years of operation
- Pressure also indicates the reservoir occurrence (driven by geological model)
- High temperature (above the supercritical conditions, enthalpy is approximated to supercritical point)

Results: Dry steam power plant

Results: Binary power plant

Conclusions

Accurate

Precise

匠 Lowers uncertainty

Thermodynamic cycle well represented

Few validation points outside the error $\pm 10\%$

Help to reduce uncertainty, and increase the spread of geothermal energy Powerful tool to evaluate the geothermal potential

Capital cost play a key role, and it need to be better constrained

Progetto PRIN 2022 PNRR InGEO

GRAZIE PER L'ATTENZIONE

Progetto PRIN 2022 PNRR InGEO